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Finite-amplitude convection in rotating spherical fluid shells is considered for a variety
of Prandtl numbers P and Rayleigh numbers Ra up to about 10 times the critical
value. Convection at low Rayleigh numbers in the form of azimuthally periodic or
weakly aperiodic drifting waves is characterized by relatively low heat transport,
especially for P . 1. The transition to strongly time-dependent convection leads to
a rapid increase of the heat transport with increasing Rayleigh numbers. Onset of
convection in the polar regions is delayed, but contributes a disproportionate fraction
of the heat transport at high Rayleigh number. The differential rotation generated
by convection, the distributions of helicity, and the role of asymmetry with respect to
the equatorial plane are also studied.

1. Introduction
Thermal convection in rotating spherical fluid shells with a spherically symmet-

ric gravity distribution represents one of the fundamental problems in geophysical
and astrophysical fluid dynamics. The linear problem of the onset of convection in
this configuration is quite well understood now after numerous papers have been
devoted to this subject. But the nonlinear problem of finite-amplitude convection
in spherical shells has not yet been fully explored. Reasons for the complexity of
the problem are that even at the onset of convection the flow is non-axisymmetric
and time dependent as was demonstrated by Roberts (1968) and Busse (1970a). The
problem of the differential rotation generated by non-axisymmetric convection has
been a focus of research in the seventies. Weakly nonlinear (Busse 1970b, 1973)
and fully numerical (Gilman 1977, 1978a, b) studies have addressed the question of
how various distributions of angular momentum are generated through the actions
of Reynolds stresses and meridional circulations. More recently the transition to
chaotic motions and the formation of cylindrical layers as proposed by Busse (1976,
1983) have been major topics in the numerical studies of nonlinear convection in
rotating spheres (Sun, Schubert, & Glatzmaier 1993a, b). But several problems have
not yet been well understood, as, for example, the role of the Prandtl number in
determining nonlinear properties of convection or the mechanism through which the
time dependence of convection leads to a strong enhancement of the heat transport.
It is the goal of the present paper to contribute new results to these and other
questions.

The paper is organized as follows: We first present the mathematical model and
its numerical implementation. Section 3 gives an overview of the observed patterns
which are described quantitatively in subsequent sections. These consider in turn the
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structure of the convection columns, the longitudinal averages of the velocity and
temperature fields, the local heat transport, and global quantities like the Nusselt
number and the kinetic energy. Finally, the results are summarized and put into the
context of previous work.

2. Mathematical formulation of the problem and numerical methods
We consider a fluid contained in a spherical shell of inner and outer radii r̂i and

r̂0. The system is rotating with the angular velocity Ω and constant temperatures
are prescribed on the stress-free spherical boundaries. Gravity is assumed to vary
linearly with the radius corresponding to an inner core of the same density as the
fluid. We introduce a dimensionless description of the problem by using the gap width
d = r̂0 − r̂i as length scale, d2/ν as time scale and P∆T as temperature scale. The
Prandtl number P is defined by P = ν/κ, where ν and κ are the viscous and thermal
diffusivities. ∆T is the temperature difference between the inner and outer spheres.
The equations of motion for the velocity vector u and the heat equation can now be
written in the form

∂

∂t
∇× u+ ∇× [(∇× u)× u)] = −Ta1/2∇× (ẑ × u) + Ra∇× (T r)

/
r0 + ∇2∇× u, (1)

∇ · u = 0, (2)

∂

∂t
T + u · ∇T = P−1∇2T , (3)

where ẑ is the unit vector along the axis of rotation Ω = Ωẑ, the Taylor number Ta
is defined as Ta = (2Ωd2/ν)2, and r is the position vector. The Rayleigh number Ra
is given by

Ra =
g0α∆Td

3

κν
(4)

where g0 is the gravitational acceleration at the outer surface and α is the coefficient
of thermal expansion. The temperature is now further decomposed as T = Ts + Θ
where Θ stands for the temperature deviation from the profile of pure conduction Ts

Ts = − 1− ri/r
1− ri/r0

P−1. (5)

The solenoidal velocity field can be written in terms of poloidal and toroidal scalars
v and w (Backus 1958)

u = ∇× ∇× (vr) + ∇× (wr). (6)

Without losing generality it can be required that the average of v and w over
spherical surfaces vanishes. This can be readily seen from the fact that the addition
of an arbitrary function of r to either v or w does not change the velocity field u. We
further introduce the representation for v, w, and Θ in terms of spherical harmonics:

v =

∞∑
l=1

l∑
m=−l

V m
l (r, t)Pm

l (θ)eimϕ, w = r

∞∑
l=1

l∑
m=−l

Wm
l (r, t)Pm

l (θ)eimϕ, (7a, b)

Θ =

∞∑
l=0

l∑
m=−l

Θm
l (r, t)Pm

l (θ)eimϕ, (7c)
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where spherical coordinates r, θ, ϕ have been introduced and where Pm
l denotes the

associated Legendre function. The governing equations then reduce to

∂

∂t
Wm

l −
(

Dl − 2
∂

∂r

1

r

)
Wm

l =
4

r

∂

∂r
Wm

l −
1

l(l + 1)
[r · ∇× (Ω′ × u)]ml /r, (8a)

∂

∂t
DlV

m
l −D2

l V
m
l =

1

l(l + 1)
[r · ∇× ∇× (Ω′ × u)]ml −

Ra

r0
Θm
l , (8b)

∂

∂t
Θm
l − P−1(Dl −

2

r

∂

∂r
)Θm

l =
1

P

2

r

∂

∂r
Θm
l − [∇ · (uT )]ml , (8c)

where Ω′ = ∇× u+ Ta1/2ẑ and

Dl =
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
.

The boundary conditions are

Vm
l =

∂2Vm
l

∂r2
=
∂Wm

l

∂r
= Θm

l = 0 at r = ri ≡
η

1− η and at r = r0 ≡
1

1− η . (9)

The radius ratio η will be fixed at the value η = 0.4 in the following analysis.
Equations (8) are solved by a spectral Chebychev collocation method. The sums in
the representations (7) are truncated to include only terms with l < L and the functions
Vm
l ,W

m
l and Θm

l are expanded in Chebychev polynomials Tn as
∑nr−1

n=0 anTn(x) with
x = 2(r − ri)− 1. The collocation points in direct space are placed at rn = ri + 1

2
(1 +

cos π(n− 1)/(nr − 1)) with n = 1, . . . , nr , such that a fast cosine transform can be used
to switch between physical and spectral space.

Equations (8) are time stepped by treating all terms on the right-hand sides explicitly
with an Adams–Bashforth second-order scheme, whereas the terms on the left-hand
sides are included in an implicit Crank–Nicolson step. At the beginning of each time
step all fields and their first and second radial derivatives are given in (r, l, m)-space;
u and ∇× u are calculated from the poloidal and toroidal fields and transformed into
(r, θ, ϕ)-space. All nonlinear products and the Coriolis term are calculated in physical
space. The divergence and radial component of the curl and of the curl of the curl as
required in (8) are evaluated with formulas adapted from Glatzmaier (1984).

During the implicit time step a set of nr linear equations needs to be solved for
every pair l, m. The equations determining the variables at the inner- and outermost
collocation points are used to enforce the boundary conditions. The corresponding
matrices are LU decomposed and stored during initialization. These matrices are
arranged to yield Θ, v and w in spectral (n, l, m)-space after the Crank–Nicolson step
so that the radial derivatives can then conveniently be obtained and transformed
back into (r, l, m)-space together with Θ, v and w for the next time step.

The possibility to fully dealias the nonlinear terms has been included in the code.
The resolution of the runs described in this paper was always good enough so that
dealiasing did not change the results. Dealiasing the angular variables, however,
stabilized the method during transient calculations and at high Ta.

The validity of the code was tested by comparing it to an independently developed
Galerkin method. Self-consistency checks have also been made: the heat transport
across any spherical surface is the same within 10−5 in time-independent states, and
the total angular momentum remained negligible throughout all runs, which were
started from initial conditions with vanishing angular momentum.
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Usually a (possibly remeshed) state obtained at a lower Ra is employed as initial
state with some noise added to eliminate spurious symmetries. The adequacy of the
resolution has been checked by executing comparative runs with other resolutions.
Time integration is continued until a stationary state is reached or enough statistics
has been accumulated in the case of chaotic states. The quality of the statistics
for any quantity q(t) was judged from the convergence of the running average
Q(t) = (1/t)

∫ t
0
q(t′)dt′. The variation of Q(t) with time serves as an error estimate.

The uncertainties in the results have also been determined through comparisons of
runs started from different initial conditions. Yet another error estimate is available
for the heat transport: the heat flux averaged over an infinite period of time must be
the same across any spherical surface. The variation with the radius of the heat flux
averaged over the spherical surface and over a long time span thus provides another
error estimate.

At predefined time intervals the program entered a routine computing various
quantities of interest for accumulation. These include the Nusselt number Nu,

Nu− 1 = −ηP dΘ0
0

dr

∣∣∣∣
r=ri

, (10)

the total kinetic energy Ekin,

Ekin =
1

2

∫
u2dV , (11a)

the energies Edr and Emc contained in the differential rotation and in the mean
meridional circulation,

Edr =

∫ ∑
l

2π

2l + 1
l(l + 1) |W 0

l |2 r4dr, (11b)

Emc =

∫ ∑
l

2π

2l + 1
l(l + 1){l(l + 1) | V 0

l |2 + | ∂(rV 0
l )/∂r |2}dr, (11c)

and the total helicities computed separately for the northern and southern hemi-
spheres,

Hn,s =

∫
hemisphere

(∇× u) · udV . (12)

The helicity h(r, θ) itself is defined as the azimuthal average u · ∇× u which will also
be discussed for various solutions.

3. Flow structure of finite-amplitude convection
In solving the basic equations (8) we have focused on the case η = 0.4 which rep-

resents a good compromise between low η-values and thin fluid shells corresponding
to values of η close to unity. In the latter cases the Rayleigh numbers that can be
reached with a given computational effort are much lower than for smaller values
of η. But η = 0.4 is not yet small enough that the distinction between polar regions
and equatorial regions disappears, which is one of the most distinguishing features of
convection in rotating spherical fluid shells.

In order to obtain a rough impression of the conditions for the onset of convection
in a rotating spherical fluid shell, it is useful to apply the analytic asymptotic formulas
obtained for the case of the cylindrical annulus with stress-free conical end boundaries.
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P Ta Rac mc

0.01 106 3510 2
0.1 106 5580 2
1 0 1133 lc = 2
1 106 23200 4
1 107 77500 5
10 106 34900 6

Table 1. P , Ta, Rac and mc for the onset of convection. The uncertainty on Rac is ±1%

Following the procedure of Busse (1970a, 1982) we find the approximate relationship

Rac ≈ Ra sin−1 θ0 , m ≈ αr̂0 sin θ0/D (13)

where Ra is the critical Rayleigh number in the annulus case, α is the corresponding
wavenumber based on the annular gap width D and θ0 is the inclination of the conical
annular boundaries. The analytical formulas give rise to the following approximate
relationships for Rac, mc, ωc:

Rac ≈
3α4

c

sin θ0

= 3

(
DP sin1/4 θ0

r̂0

√
2 cos2 θ0(1 + P )

)4/3

Ta2/3 ≈ 3

2

(
4P

5(1 + P )

)4/3

Ta2/3, (14a)

mc =

(
r̂2

0P sin4 θ0

D2
√

2 cos2 θ0(1 + P )

)1/3

Ta1/6 ≈
(

25P

27× 4×
√

2(1 + P )

)1/3

Ta1/6, (14b)

ωc =

(
D2 sin2 θ0

√
2

r̂2
0 cos4 θ0P (1 + P )2

)1/3

Ta1/3 ≈
(

8
√

2

25P (1 + P )2

)1/3

Ta1/3, (14c)

where D = d has been assumed and the expressions on the right-hand sides give the
numerical values for θ0 = 30◦. The asymptotic critical value Rac is much smaller than
the critical values obtained for finite Ta and given in table 1. But since the main
purpose of expressions (14) is the elucidation of the dependence on the parameters
P and Ta, there is no need for a more detailed adjustment of the parameters of the
annulus to the case of the sphere.

As is well known from earlier work on the onset of convection in spherical shells
(Busse & Cuong 1977; Zhang & Busse 1987), convection appears first in the equatorial
region outside the cylindrical surface touching the inner sphere at its equator. Since
the convection flow assumes the form of columns aligned with the axis of rotation,
it can be described quite well by the lines of constant z-component of vorticity in
the equatorial plane as shown in figure 1. As the Rayleigh number is increased,
the stationarily drifting convection columns are replaced by an oscillatory form of
convection in which the shape of the columns varies in a time-periodic fashion.
Because the slope of the boundaries as well as the mean zonal flow increase with
distance from the axis, the phase velocity of the drift tends to be larger for the outer
part of the columnar spirals than for the inner part. Thus the outer parts separate
from the inner parts in the case of plot (b) and reconnect with the next inner part in
the prograde direction as shown in the time sequence of figure 1(d). Since the outer
parts of the columns are strongly stretched in a spiral fashion, they require a larger
angular region than the inner parts. There are thus twice as many columns on the
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(a) (b)

(c) (d )

Figure 1. Contour plots of the vorticity component ωz parallel to the axis of rotation in the
equatorial plane for Ta = 106, P = 1. Solid (dashed) lines denote positive (negative) values of ωz .
The plots have been obtained for Ra = 3×104, 8×104, 4×105 (a–c). Contours of constant Θ in the
equatorial plane for four equal distant time steps of ∆t = 2.96× 10−2 which cover in the clockwise
sense a period of oscillation in the case Ra = 8× 104. The m = 8 mode which is predominant near
the inner boundary drifts relative to the m = 4 mode in the retrograde direction such that a shift
by one m = 8 wavelength occurs in each period.

inner circle in the case of figure 1(b). As the Rayleigh number is increased further,
the time-periodic (apart from a shift in azimuth) pattern become chaotic, but the
structures seen in figure 1(c) still resemble those of the time-periodic case.

The tendency of the convection columns to assume different wavenumbers at
different distances from the axis is a general phenomenon of convection in rotating
systems with curved boundaries. In the cylindrical annulus system with curved conical
boundaries this tendency manifests itself in the form of the double-column instability
(Or & Busse 1987) which leads to a break-up of the convection layer into two sub-
layers each characterized by convection columns with their own typical wavenumber.
Schnaubelt & Bussse (1992) have analysed in detail the case of a 2:3 ratio of the
wavenumbers. Sun, Schubert & Glatzmeier (1994) show an example of a 5:9 ratio.
The 4:8 wavenumber ratio apparent in the plots of figure 1 is special in so far as
only the time, not the spatial symmetry is broken in the transition.

When the Taylor number is increased, the number of columns increases as expected
from (14c) and a similar change of the convection occurs with increasing Ra as has
been discussed in connection with figure 1. Typically an asymmetry between areas
of cyclonic (solid lines) and anticyclonic vorticity (dashed lines) can be seen which
is also noticeable in the plot of figure 1(c). Cyclonic vorticity is associated with a
flow towards the equatorial plane along the axis of the columns while the opposite
flow is associated with anticyclonic columns. The divergence of this component of
flow in the equatorial plane tends to widen the cyclonic columns and to stretch the
anticyclonic columns as can be seen in figure 1(b). At the same time this combination
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(a) (b)

(c)

Figure 2. Streamlines −r∂v/∂ϕ = const. in the equatorial plane for P = 0.1, Ta = 106

and for Ra = 104, 2× 104, 4× 104 (a–c).

of flow and vorticity is responsible for the negative (positive) helicity in the northern
(southern) hemisphere. The component along the axis of the columns is a result of
the finite inclination of the outer spherical boundary with respect to the equatorial
plane as can be understood on the basis of the analytical expressions derived in the
case of the rotating cylindrical annulus model (Busse 1975).

For the moderate Prandtl number P > 1 the structure of convection does not differ
much from that shown in the case P = 1 except that small scales in the velocity field
are not as easily excited as for P 6 1. The various types of vacillations that can be
seen in the weakly nonlinear regime have been studied by Zhang (1991, 1992) in the
case P = ∞.

At the same Taylor number that has been used for figure 1, convection modes
with much lower azimuthal wavenumber become preferred at low Prandtl numbers
as is evident from figure 2. The transition from drifting to vacillating columns
manifests itself through the interaction of neighbouring modes as for example those
with m = 1, m = 2 and m = 3 in figure 2(b) which gives rise to a periodically
varying pattern relative to a drifting frame of reference. As the Rayleigh number is
increased further aperiodic distortions of the convection columns occur as is evident
in figure 2(c).

The coherence of the convection flow in the direction of the axis of rotation remains
preserved to a large extent even as the order in the azimuthal direction disintegrates.
The coherence is enforced, of course, by the approximate validity of the Proudman–
Taylor condition at high Taylor numbers. But even at the relatively low value of
Ta = 106 the coherence is still a predominant feature at high values of the Rayleigh
number as can be seen in figure 3 where the deviation Θ − Θ̄ of the temperature
from its axisymmetric distribution on coaxial cylindrical surfaces has been plotted for
several values of Ra. The fact that a minimum of the temperature is usually followed
more closely by a maximum in the prograde sense of rotation than in the opposite
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(a)

(b)

(c)

Figure 3. Lines of constant temperature deviation from the axisymmetric component, Θ − Θ̄, on
the cylindrical surface r sin θ = 1.168 in the case Pr = 10, Ta = 106 for Ra = 4×104, 2×105, 4×105

(a–c). The angle ϕ increases from left to right.

case indicates that anticyclonic vortices are narrower than cyclonic ones as we have
observed above.

4. Azimuthally averaged properties of convection
Of particular interest are the differential rotation induced by convection and the

latitudinal dependence of the heat transport. The differential rotation is generated by
the Reynolds stresses of the non-axisymmetric component of convection on the one
hand and by the action of the Coriolis force on the meridional circulation on the other
hand. For Prandtl numbers P of the order unity or less the differential rotation is
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(a) (c) (e)

(b) (d) ( f )

Figure 4. Contours of constant azimuthally averaged velocity in the ϕ-direction, uϕ, for
P = 0.01, Ra = 4.3 × 103 (a), P = 0.1, Ra = 7 × 103 (b), P = 1, Ra = 5 × 104 and Ra = 4 × 105

(c, e), P = 10, Ra = 4× 104 and Ra = 4× 105 (d, f ).

100

0

–100
30 60 90

u
}

θ

Figure 5. The azimuthally averaged ϕ-component of the velocity field, uϕ, at the surface, r = r0, as
a function of the colatitude θ (in degrees) in the case Ta = 106 for P = 1 (solid curves), P = 0.1
(dashed lines) and P = 10 (dotted lines, curves have been multiplied by a factor 10). The values of
uϕ at θ = 60◦, increase monotonically with Ra. Curves for Ra = 105, 2 × 105, 4 × 105 in the case
P = 1, for Ra = 104, 2 × 104, 4 × 104 in the case P = 0.1 and for Ra = 7 × 104, 2 × 105, 4 × 105 in
the case P = 10 are shown.

nearly in geostrophic equilibrium such that it depends mainly on the distance s from
the axis of rotation and little on the z-coordinate in the direction of the axis. This can
be seen in figure 4 where only the case P = 10 shows significant deviation from the
geostrophic balance. The variation of the mean zonal flow at the outer boundary is
shown for different Rayleigh and Prandtl numbers in figure 5. As has long been known
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P Ta Ra nr L Nu Ekin Etor Edr Emc H

0.01 106 ∗4× 103 17 48 1.00012 1.93× 103 1.14× 103 89 0.09 458
∗4.3× 103 17 48 1.00016 2.84× 103 1.62× 103 208 0.17 638
◦4.6× 103 17 48 1.0018 2.05× 104 9.5× 103 1.15× 103 110 7.0× 103

5× 103 17 48 1.0035 4.4× 104 1.6× 104 1.16× 104 125 1.6× 104

7× 103 17 48 1.009 1.5× 105 4.6× 104 4.1× 104 1.5× 103 5.6× 104

1× 104 17 64 1.025 4.5× 105 1.75× 105 1.0× 105 8.0× 103 1.22× 105

1.5× 104 17 64 1.050 8.0× 105 3.75× 105 5.0× 104 2.5× 104 2.0× 105

0.1 106 ∗7× 103 17 16 1.0045 1.24× 103 744 68 0.036 256
∗1× 104 17 16 1.0075 2.75× 103 1.50× 103 412 0.167 450
2× 104 17 48 1.019 1.31× 104 6.75× 103 3.62× 103 3.94 1.64× 103

3× 104 17 48 1.205 1.18× 105 5.5× 104 3.13× 104 940 1.9× 104

4× 104 17 48 1.34 1.83× 105 7.15× 104 5.6× 104 2.13× 103 3.7× 104

8× 104 33 64 1.9 5.15× 105 2.5× 105 6.3× 104 1.54× 104 2.7× 105

1 106 ∗3× 104 17 32 1.06 215 137 27.3 0.014 163
∗5× 104 17 32 1.129 810 396 288 0.144 770
8× 104 17 32 1.28 2.0× 103 817 750 1.09 3.85× 103

1× 105 17 32 1.525 5.26× 103 2.66× 103 1.3× 103 3.65 9.1× 103

2× 105 33 64 2.45 2.84× 104 1.07× 104 7.5× 103 103 3.45× 104

4× 105 33 81 4.05 9.0× 104 4.28× 104 1.75× 104 1.0× 103 1.1× 105

1 107 ∗8× 104 17 64 1.00785 33 23.7 0.785 1.06× 10−4 33
∗1× 105 17 64 1.0454 310 180 65 5.0× 10−3 230
◦2× 105 17 64 1.113 1.75× 103 615 954 0.10 1.75× 103

◦3× 105 17 64 1.165 4.33× 103 1.18× 103 2.81× 103 0.39 4.35× 103

4× 105 33 81 1.4 1.24× 104 4.63× 103 5.7× 103 4.8 2.16× 104

6× 105 33 81 1.7 4.1× 104 7.8× 103 2.9× 104 18 4.5× 104

8× 105 33 81 2.2 8.2× 104 1.3× 104 6.4× 104 52 7.0× 104

10 106 ∗4× 104 17 64 1.0753 2.44 1.82 8.3× 10−2 1.33× 10−4 4.715
◦7× 104 17 81 1.415 20.25 14.4 0.517 0.068 50
1× 105 17 64 1.62 40 27 1.26 0.02 110
2× 105 17 64 2.5 170 109 7.14 0.21 544
4× 105 17 64 3.75 555 260 20.4 2.1 1.54× 103

Table 2. P , Ta, Ra, nr, L,Nu, Ekin, Etor, Edr, Emc, and H for all calculations on the rotating system. A
uniformly drifting pattern is observed at the Ra marked by an asterisk. Open circles denote states
with time-dependent patterns of longitudinal periodicity mc (see table 1). The errors on Nu − 1
and all other quantities are ±2% in these states. In all other cases, the error is typically ±20% on
Ekin, Edr, Emc, and H and ±4% on Nu (±5% on Nu− 1 for Pr = 0.01)

(Busse 1970b), convection tends to generate a prograde differential rotation near the
equator, although in the case of moderate or large Prandtl numbers the maximum
value of the angular velocity is usually reached at a higher latitude as the Rayleigh
number is increased above its critical value. A sharp increase in the retrograde rotation
near the poles can be noticed in connection with the onset of convection at the polar
regions. At the highest Rayleigh numbers that have been achieved in the numerical
simulation the time-averaged differential rotation tends to saturate.

The meridional circulation represents a relatively weak component of the velocity
field as is evident from its kinetic energy listed in table 2. Nevertheless, in computations
of dynamos even weak meridional circulation may determine the type of dynamo
that can be obtained (Roberts 1972; Sarson & Gubbins 1995). Typically the presence
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(a) (b) (c)

(d ) (e) (f )

Figure 6. Streamlines of the meridional circulation (a–c) and contours of constant azimuthally
averaged temperature (d–f ) for P = 0.01, Ra = 4.3× 103, P = 1, Ra = 4× 104, P = 10, Ra = 4× 105

(left to right) are shown in the case Ta = 106.

of a meridional circulation can transform an oscillatory dynamo into a steady one.
As shown in figure 6(a–c) the meridional circulation also reflects the coherence along
coaxial cylindrical surfaces. While at low Rayleigh numbers the polar regions are
nearly stagnant, strong circulations set in as soon as a ‘critical’ Rayleigh number for
the onset of convection in the polar regions is exceeded. This onset is not sharply
defined, of course, but at about a value of Ra of three to five times the critical value
for the equatorial region (Busse & Cuong 1977) the amplitude of convection begins
to increase rapidly near the poles. The preferred mode of convection in that region
should be in the form of radially directed rolls according to the thin shell analysis of
the paper just mentioned. Some indication of this preference can be seen in the plots
of figure 7, especially in the plot for P = 10.

The axisymmetric component Θ̄ of Θ reflects both the advection by the meridional
circulation and the heat transport by the non-axisymmetric component of convection.
While significant amplitudes of Θ̄ are confined to the equatorial region for relatively
low values of Ra, a nearly spherical symmetric distribution Θ̄ is found at higher
values of Ra as can be seen in figure 6(d–f ). Obviously, after the onset of the polar
convection cells the heat transport in these regions soon catches up with the heat
transport by equatorial convection as the Rayleigh number is increased.

The change in the style of convection with increasing Rayleigh number is even more
evident in plots of the local Nusselt number, Nu(θ), as a function of the colatitude θ
as shown in figure 8. Using the definition

Nui,o(θ)− 1 =
1

2π

2π∫
0

∂Θ

∂r
dϕ

/
dTs
dr

at r = ri, r0 (15)

we have plotted the local Nusselt numbers at the inner and outer boundaries, Nui
and Nuo, for various Prandtl and Rayleigh numbers. In the case P = 1 (see figure 8),
the convective part of the heat transport, indicated by Nu− 1, assumes only a small
fraction of its equatorial value in the polar region as long as the Rayleigh number is
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(a) (b)

(c)

Figure 7. Lines of constant radial velocity on the mid-surface r = (ri+r0)/2 of the fluid shell viewed
from the north pole in the case Ta = 106 for (a) P = 0.1, Ra = 2× 104, (b) P = 1, Ra = 2× 105, (c)
P = 10, Ra = 4× 105.

less than about 3Rac. As soon as the convection starts in the polar region, the heat
transfer to the inner sphere at the poles increases rapidly with increasing Ra owing to
the descending polar plumes. The heat transfer at the outer boundary also increases,
but the dependence on θ is more uniform in this case.

In the case of low Prandtl numbers the situation is somewhat more complex.
The local Nusselt number Nui increases first at the poles relative to its value at
the equator as can also be seen in figure 8. But at Ra = 8 × 104 the dependence
on θ has reversed and Nui is now smaller in the polar region than at the equator.
The reversal of the direction of the polar plume is responsible for this feature (see
figure 9). A corresponding reversal, but less dramatic, is seen in dependence of Nuo.
Although the polar regions seem to be an unlikely place for a maximum of the heat
transport per unit area this appears to be the typical situation for low-Prandtl-number
fluids.

Figure 9 serves to illustrate another feature of the computations at higher Rayleigh
numbers. Although figure 9 has been obtained as a time average over a period of
0.3 thermal time units corresponding to about 60 convection turnover times, there
remains a finite asymmetry with respect to the equator which tends to increase
slowly with the Rayleigh number. Because of the symmetry of the problem, it
must be expected that this asymmetry will disappear for averages over very long
intervals. For this reason the arithmetric mean of both hemispheres has been used
in all previous figures discussed in this section. Because of the finite computer
time available the possibility cannot entirely be excluded that, depending on the
initial condition, some amount of asymmetry may persist indefinitely. In the cases
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Figure 8. The local Nusselt number Nui,o as a function of the colatitude θ for Ta = 106 at the
inner (solid lines) and the outer (dashed lines) boundary of the fluid shell. The curves correspond to
P = 0.1 with Ra = 3× 104, 4× 104, 8× 104 and to P = 1 with Ra = 2× 105, 4× 105 (from bottom
to top at mid-latitudes).

(a) (b)

Figure 9. Streamlines of the meridional circulation averaged over an interval of length 0.3 in time
in the case Ta = 106, P = 0.1 with Ra = 4× 104 (a) and Ra = 8× 104 (b).

of higher Prandtl number the number of turnover times for time averaging has
been less than in the case P = 0.1. But at least 4 turnover times have always been
used.

The helicity distribution h(r, θ) is plotted in figure 10 and exhibits the symmetry
discussed earlier in that it is predominantly negative in the northern hemisphere while
it has the opposite sign in the southern hemisphere. Again a mean value of both
hemispheres (including the proper sign) has been plotted in order to approach the
expected long-time average. The contribution to the helicity from the axisymmetric
components of motions is only of the order of 1% in the case of figure 10.



372 A. Tilgner and F. H. Busse

(a) (b)

(c ) (d )

Figure 10. Contours of constant helicity h(r, θ) for P = 0.01, Ra = 4.3× 103 (a), P = 0.1,
Ra = 7× 103 (b), P = 1, Ra = 5× 104 (c) and P = 10, Ra = 4× 104 (d), all for Ta = 106.

5. Global properties of convection
The effects of rotation do not necessarily lead to a decrease in the heat transport

by convection. In the case of the cylindrical annulus with parallel end boundaries
with convection driven by a radial gravity field (or by centrifugal buoyancy in the
case of laboratory experiments) the Coriolis force may actually promote the heat
transport through the suppression of three-dimensional motions which exhibit a
lower Nusselt number than two-dimensional rolls, at least for Prandtl number of
the order unity or less. Even in the case of a horizontal layer rotating about a
vertical axis there are parameter regimes for which the heat transport in the presence
of rotation is higher than in its absence (Clever & Busse 1979). The influence of
the Coriolis force in combination with the geometry of the spherical shell leads
to a strong impeding of the convective heat transport, especially at low Prandtl
numbers. As can be seen from table 2, at more than 4 times the critical value of the
Rayleigh number the Nusselt number is still only about 5% above its static value
for P = 0.01. In contrast to the horizontal layer, the drifting convection vortices in
a spherical shell make it difficult for fluid parcels to travel from the hot to the cold
boundary and vice versa. Either the streamlines are strongly extended in a spiral
fashion and the drift may reverse the motion of the parcel before it has travelled
very far, or the dimension of convection columns in the direction perpendicular to
the axis is too small, or the convection is attached to outer equatorial boundary as
in the case of figure 5 and even more so at lower Prandtl number (Zhang & Busse
1987).

In the case of the Prandtl numbers P = 0.1 and P = 1 a rather sudden change
in slope in the Nu(Ra)-relationship can be noticed in figure 11 which is con-
nected with the onset of a strong time dependence of convection. Since a weak
time dependence, apart from the general drift, can already be noticed at Rayleigh
numbers not far above the critical value it is not easy to pinpoint the mecha-
nism through which chaotic convection leads to the strong increase in the con-
vective heat transport. This phenomenon has been studied in detail in the case
of convection in a cylindrical annulus where the transition from the stationary
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Figure 11. The dependence-time of averaged Nusselt number Nu on the Rayleigh number Ra for
Ta = 0, P = 1(©), for Ta = 106, P = 0.1(∇), P = 1(�), P = 10(∆) and for Ta = 107, P = 1(⊕).

mean flow solution to vacillating convection yields a similarly strong change in the
slope of the Nu(Ra)-dependence (Or & Busse 1987; Schnaubelt & Busse 1992).
Only at Prandtl numbers of the order 10 or larger is the slope of the Nu(Ra)-
curve at Ra = Rac comparable to that of the non-rotating case. The slope even
exceeds the slope of the non-rotating case. This feature can also be noticed in
the case of a plane layer with vertical axis of rotation (Veronis 1968; Clever &
Busse 1979) because convection with small horizontal wavelength (which is preferred
in the rotating case) is more effective in transporting heat than large-wavelength
convection.

The plots of the kinetic energy versus Rayleigh number shown in figure 12 only
partly reflect the kinks that have just been discussed in connection with figure 11. In
the case P = 1 the kinetic energy grows smoothly with the Rayleigh number and only
in the case P = 0.1 is a jump in the kinetic energy seen at about the same Rayleigh
number where the slope of the Nu(Ra)-dependence changes.

While figures 11 and 12 present only time-averaged properties, there is much to
be learnt from the correlations in time between the global properties. These are
most easily studied at low Rayleigh numbers, in the regime of (nearly) periodic time
dependence. As is evident from figure 13 differential rotation and heat transport
as given by the Nusselt number are anti-correlated in time for Prandtl numbers
much less than unity. The shearing due to the differential rotation tends to inhibit
convective motions and the maximum of the energy of the axisymmetric compo-
nent of the toroidal part of the velocity thus nearly coincides with the minimum
of Nu. The energy of the poloidal part of the velocity field, on the other hand, is
well correlated with the convective heat transport. The shearing action of the dif-
ferential rotation decreases with increasing Prandtl number and the anticorrelation
with the heat transport changes into a positive correlation as the Prandtl number
begins to exceed unity. Because the period of vacillations becomes longer, the sus-
tenance of differential rotation against viscous dissipation depends on a sufficiently
strong amplitude of convection for large P , which explains the change in the corre-
lation.
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Figure 12. The time-dependence of averaged kinetic energy of the convection flow on the Rayleigh
number Ra for Ta = 0, P = 1(©), for Ta = 106, P = 0.01(♦), P = 0.1(∇), P = 1(�), P = 10(∆) and
for Ta = 107, P = 1(⊕).
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Figure 13. Nusselt number Nu (solid lines), kinetic energy of differential rotation, Edr , (dashed
lines), kinetic energy, Epol , of the non-axisymmetric component of the poloidal component of
motion (dotted lines) for P = 0.1, Ta = 106, Ra = 2 × 104 (thin lines, left ordinate) and for
P = 10, Ta = 106, Ra = 7 × 104 (thick lines, right ordinate). The time is measured in units of the
periods of oscillations which is 0.0241 (3.22) for the case of P = 0.1 (10). The Nusselt number
measured on the left (right) ordinate has been multiplied by the factor 2000 (4). Edr measured on
the right ordinate (thick dashed line) has been multiplied by the factor 10.

6. Concluding discussion

A previous analysis (Zhang & Busse 1987) of the linear problem of the onset
of convection in rotating spherical shells has already emphasized the importance
of the Prandtl number for solutions of the problem. While the onset of convection
occurs in a similar manner for Prandtl numbers of the order unity or larger, different
modes of convection compete at low Prandtl numbers. In the present paper the
nonlinear properties of convection show a similar behaviour. The style of convection
is quite different for low and for moderate to large Prandtl numbers with the case
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of P = 1 assuming a special role in that it straddles the boundary between low- and
high-Prandtl-number convection.

Because of the relative large number of parameters entering the problem and
because of the high demand on computer capacities especially for low Prandtl number
solutions, various aspects of finite-amplitude convection could not be investigated.
The transition from equator-attached to columnar convection (Zhang & Busse 1987)
has not been studied at finite-amplitudes and the relationship to inertial-wave-type
convection at very low Prandtl numbers (Zhang 1994) has not been analysed either.
Some of the features found in the properties of turbulent convection, such as kinks
in the Nusselt number dependence on Ra, can eventually be understood more clearly
when a bifurcation theory is applied to a reduced system of modes generated, for
example, through the imposition of azimuthal periodicity. Evidently the irregular
wandering of fluid columns facilitates the movement of hot and cold fluid to the
boundary of opposite temperature.

The origin of the equatorial asymmetry is also incompletely understood and will
require additional analysis based on stability studies of special solutions. In full
numerical simulations such as those described in the present paper it is difficult to
isolate the physical mechanisms leading to small asymmetries.

The research reported in the paper has been supported by the Deutsche Forschungs-
gemeinschaft under Grant Bu589/5-2. The authors are grateful to Dr J. Wicht for his
help in checking the numerical code against his Galerkin code.
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